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a b s t r a c t

The objective of this study was to develop an integrated multivariate approach to quantify the con-
stituent concentrations of both drug and excipients of powder blends. A mixture design was created
to include 26 powder formulations consisting of ibuprofen as the model drug and three excipients
(HPMC, MCC, and Eudragit L100-55). The mixer was stopped at various time points to enable near-
infrared (NIR) scan of the powder mixture and sampling for UV assay. Partial least square (PLS), principal
component regression (PCR), and multiple linear regression (MLR) models were established to link
the formulation concentrations with the Savitzky–Golay 1st derivative NIR spectral data at various
characteristic wavelengths of each component. PLS models based on the NIR data and UV data were
ultivariate statistical data analysis
owder blending
omponent quantification
oving block standard deviation

NOVA
cale of scrutiny

calibrated and validated. They predicted the main components’ concentrations well in the powder
blends, although prediction errors were larger for minor components. As expected from the complete-
random-mixture (CRM) model, the measurement uncertainties were higher for minor components in
the powder formulations. The prediction performance differences between the NIR model and UV model
were explained in the context of scale of scrutiny and model applicability. The importance of understand-
ing excipient variability in powder blending and its implication for blending homogeneity assessment is
odeling highlighted.

. Introduction

In studying the mixing of powders, it is necessary to know
he composition of a mixture by a large number of sample points
hroughout its volume in order to describe the distribution of the
omponents adequately. However, the theory of solids mixing has
ot advanced much beyond the most elementary of concepts and,
onsequently, is far behind that which has been developed for
uids. This lag can be attributed primarily to an incomplete under-
tanding of the ways in which particulate variables influence such
ystems and to the complexity of the problem itself (Lachman et al.,
986).

Traditional method for determining the powder blending homo-
eneity has been focused on the active pharmaceutical ingredient

API). Although, excipients have been proven as important elements
n the context of Quality-by-Design (QbD), sufficient attention has
ot been directed to the monitoring and quantification of the excip-

ents in the powder blends due to technical difficulties encountered

� Disclaimer: The views and opinions expressed in this article are only of the
uthors, and do not necessarily reflect the views or policies of the FDA.
∗ Corresponding author. Tel.: +1 301 796 0022; fax: +1 301 796 9816.
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(Larner et al., 2006). Recent regulatory initiatives such as process
analytical technology (PAT) (FDA, 2004a,b) and Quality-by-Design
(FDA/ICH, 2006a, 2006b) have provided unprecedented opportu-
nities to go beyond what was done in the past. As an example,
for pharmaceutical unit operation, at-/in-/on-line monitoring tech-
niques may provide advantages such as fast and reliable data
acquisition with representative sampling. These advantages would
enable us to collect real-time process data and information. With
appropriate data analysis and modeling strategy implemented, the
information generated could enable real-time process decision-
making and process adjustment. In addition, recent development
on chemometric techniques may provide additional tools to quan-
tify component compositions of both API and excipients in the
final dosage form (Wu et al., 2007b). Therefore, it is worthwhile
to explore the possibility to simultaneously quantify components
of powder blends through integrated online and advanced chemo-
metrics techniques.

A number of online techniques have been developed for mon-
itoring powder blending process over the last few decades, such

as LIF (light induced fluorescence) (Ashton et al., 1966; Lai et al.,
2001), NIR (near-infrared reflectance spectroscopy) (MacDonald
and Prebble, 1993; Sekulic et al., 1996; Hailey et al., 1996; Sekulic
et al., 1998;El-Hagrasy et al., 2001), X-ray fluorescence (Beretzky
et al., 2005), and effusivity (Léonard et al., 2008). Advancement in

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:huiquan.wu@fda.hhs.gov
mailto:huiquan_wu@yahoo.com
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After weighting the components using Mettler AE 240 analytical
balance (Mettler Instrument Corp, Highstown, NJ), the components
of each formulation (in a total of 5 g) were transferred to a 20 ml
scintillation vial for geometric mixing for 5 s. The vials were then
placed inside a basket of a Tubula mixer (Willy A. Bachofen AG,

Table 1
Extreme vertices design for the formulation components’ concentrations.

Number Ibu MCC Eudragit HPMC

1 0.46 0.38 0.15 0.01
2 0.75 0.19 0.05 0.01
3 0.37 0.57 0.05 0.01
4 0.36 0.57 0.05 0.02
5 0.27 0.57 0.15 0.01
6 0.69 0.19 0.1 0.02
7 0.25 0.57 0.15 0.03
8 0.3 0.57 0.1 0.03
9 0.7 0.19 0.1 0.01

10 0.55 0.38 0.05 0.02
11 0.68 0.19 0.1 0.03
12 0.32 0.57 0.1 0.01
13 0.31 0.57 0.1 0.02
14 0.26 0.57 0.15 0.02
15 0.63 0.19 0.15 0.03
16 0.35 0.57 0.05 0.03
17 0.74 0.19 0.05 0.02
18 0.44 0.38 0.15 0.03
19 0.51 0.38 0.1 0.01
0 H. Wu et al. / International Journ

lectro-optic technology and instrumentation has greatly increased
he power and utility of NIR spectroscopy, especially the avail-
bility of rugged, all-solid-state smart spectrometers based on
cousto-optic tunable-filter (AOTF) technology. This technology
akes NIR spectroscopy a faster and more reliable tool for many

pplications. On the other hand, increased attentions have been
irected to the effect of measurement interface between the pro-
ess sensor and the pharmaceutical materials on the spectral data
uality over the past few years. For example, a few researchers
ave examined some practical issues such as, effective mass sam-
led by the fiber-optic probe, the effect of beam size on real-time
etermination of powder blend homogeneity by an online near-

nfrared sensor, and the effect of instrumental and compositional
ariables on THz spectral data quality (Cho et al., 1997; Li et al.,
007; Wu et al., 2007c). A paper (Li and Worosila, 2005) dis-
ussed quantification of acetaminophen, prosolv, crospovidone,
nd magnesium stearate in powder blends using designed multi-
ariate models by NIR spectroscopy, assuming that all formulations
each blending homogeneity with a certain time, for example,
0 min.

All of these previous works collectively advanced our under-
tanding of powder blending process. However, none of them have
sed an integrated approach of combining statistical experimental
esign, multivariate data analysis, on-line or at-line process mon-

toring with UV spectroscopy confirmation to understand powder
lending process kinetics, blending homogeneity, and simultane-
us quantification of both API and excipients for a four-component
ormulation system. Recent regulatory documents (FDA, 2004a,
; FDA/ICH, 2006a, 2006b) in the chemistry, manufacturing, and
ontrol (CMC) area have collectively highlighted the critical impor-
ance of using formal experimental design, PAT tools, and integrated
pproach for in-depth process understanding to ensure that the
roduct quality is built-in or by design. Powder blending as one key
nit operation for the solid dosage form manufacturing, ensures
t least two critical quality attributes: blending uniformity and
ontent uniformity because uniformity is necessary to produce
tablet having a reproducible dissolution profile, uniform taste

nd color. These two quality attributes are highly related to prod-
ct safety especially for narrow therapeutic index (NTI) drugs
nd high potency drugs. Furthermore, knowledge of exact con-
entrations of both API and excipients in the final dosage form
s critical for ensuring product performance, product quality, and
atient safety. However, current practices largely focus on the
PI for drug product. The excipients’ concentrations in the final
osage are inferred based on the initial physical dispersion of
harmaceutical components prior to mix operation. Few alter-
ative methods (Wu et al., 2007b) have been developed in this
egard.

From a PAT process validation (FDA, 2004b) and process control
Wu et al., 2007a) perspective, key questions for blending operation

ay include the following:

1) How to quantify components of powder blends simultane-
ously?

2) How to validate or confirm the PAT blending process monitoring
results via other fast and convenient spectroscopic methods?

3) How to link the scale of scrutiny and the homogeneity of both
API and excipients?
To examine the above technical challenges at the laboratory
cale, an extreme vertices design was created to include 26 for-
ulations which consist of a four-component formulation system

or powder blending study. This work was focused on component
oncentration quantifications through various multivariate chemo-
etric modeling approaches.
harmaceutics 372 (2009) 39–48

2. Experimental

2.1. Materials and methods

The following pharmaceutical materials were used as-received
for this study, without further processing or purification prior to
the powder mixing: USP 70 grade Ibuprofen (Albemarle Corp.,
LA. Lot No. 062342); Hydroxypropyl Methylcellulose (HPMC),
Methocel E15 Pemium LV (Dow Chemical, Midland, Michigan. Lot
No. TH03012402); USP/NF Microcrystalline Cellulose (MCC) (JRS
Pharma LP, Cedar Rapids, Iowa. Lot No. E5D6B17); Eudragit L 100-55
(Methacrylic Acid-Ethyl Acrylate Copolymer (1:1), Methacrylic Acid
Copolymer Type C NF) (Degussa, Germary. Lot No. B040804021).
Class 1B HPLC grade Methanol (Fisher Scientific, USA. Lot No.
051796) was used for dissolving the powder samples prior to the
UV analysis.

2.2. Experimental design

An extreme vertices design was used to compute the for-
mulation compositions by JMP 5.1 software (SAS Institute, Cary,
NC), with the following constraints applied to the weight frac-
tions of corresponding formulation components: for ibuprofen,
0.25 ≤ wt. fraction ≤ 0.75; for HPMC, 0.01 ≤wt. fraction ≤0.03; for
MCC: 0.19 ≤wt. fraction ≤ 0.57; for Eudragit L 100-55: 0.05 ≤wt.
fraction ≤ 0.15. The 26 formulations compositions were listed in
Table 1. Such an experimental design covers a wide range of
concentrations for both API (ibuprofen) and one major excipient
(MCC). Consequentially, the multivariate statistical models to be
constructed based on this DOE will have enough variability built-in
and thus have robustness for actual applications.

2.3. Powder blending experiments
20 0.73 0.19 0.05 0.03
21 0.54 0.38 0.05 0.03
22 0.45 0.38 0.15 0.02
23 0.65 0.19 0.15 0.01
24 0.49 0.38 0.1 0.03
25 0.56 0.38 0.05 0.01
26 0.64 0.19 0.15 0.02
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at around 1690 and 1726 nm, HPMC peak at around 1734 nm.
Therefore, the quantification method based on one characteristic
NIR absorbance peak value of a component would face challenge
due to the spectral overlapping features of the pure components
H. Wu et al. / International Journ

aschinenfabrik, Basel Switzerland), that was operated at 72 rpm
or powder blending. The powder blending operation was stopped
t a series of pre-defined time points. The powder inside the vial
as then subjected to NIR scan (as described in the following sec-

ion). After NIR scanning, about 20 mg powder was sampled from
he powder bed inside the vial using a spatula with scoop. The
xact amount of sample was weighted by Mettler AE 240 analytical
alance. The sample was placed in another 20 ml scintillation vial
hich was stored in descinator at constant relative humidity of 10%

nd room temperature (21 ◦C) for UV assay later on.
When the NIR scan and sampling was done for a pre-defined

ime point, the vials were placed inside the basket of the Tubula
ixer again to resume the mixing operation until the next pre-

efined time point was reached. The NIR scan was conducted for
ach time point. However, for practical reason, the sampling for
V assay was only conducted for time points that were deemed
s approaching the blending end-point by the methods discussed
reviously (Wu and Khan, 2009).

.4. NIR spectroscopy

In this work, near-infrared (NIR) spectra of blending powders
t various time points were acquired with a LuminarTM acoustic-
ptic tunable-filter based NIR spectrometer (Brimrose Corporation
f America, Baltimore, MD), equipped with a transflectance probe.
o ensure a representative and consistent sampling from the probe
easurement perspective, the optic probe was kept at a fixed posi-

ion vertically by a support from a lab frame. The probe was inserted
nto the vial with the probe end positioning at about the middle
ortion of the powder bed height. The acquisition parameters for
he NIR spectrometer were: Number of spectra average: 50; Back-
round correction: No. Scan type: normal; Gain: 4. As discussed in
nother manuscript (Wu and Khan, 2009), certain measures were
aken to eliminate the potential measurement errors associated
ith the probe positioning difference and the electronic noise. For

ach blending time point, the probe was pulled out from the vial
nd then reinserted into the powder bed at exactly the same posi-
ion for three times. The vertical position of probe was fixed by the
upporting frame and lab desk. After each probe positioning, about
2–15 NIR spectra were acquired and then averaged. All of the three
veraged NIR spectra obtained from the three separated position-
ng of the NIR probe were then averaged one more time to obtain
representative NIR spectrum for each pre-defined blending time
oint. All of the later multivariate statistical modeling excises were
ased on these averaged NIR spectra.

.5. Tap density

Tap density of the powder formulation was measured by Electro-
ab Tap Density Tester (USP) model ETD-1020 (GlobePharma, New
runswick, NJ). A 25 ml graduate cylinder was used to contain the
owder mixture under studied. 1250 tapping was applied to each
owder formulation which total weight was 7.00 g.

.6. UV spectrometer

The UV spectra were collected using the Agilent UV-VIS 8453
pectrophotometer (Santa Clara, CA) attached to a sipper system
onnecting the peristaltic pump and tubing. Individual powder
ample weighed at each blending time point was transferred to
25 ml volumetric flask. Twenty-five milliliters of methanol was
dded to the volumetric flask for dissolving the weighted powder.
his dissolving process was completed via gentle stirring using a
ortex from Scientific Industries’ Vortex-Genie 2 (Bohemia, New
ork). Prior to testing the sample solution using the Agilent UV-
IS 8453 system, the sample solution was filtered with 0.45 �m
harmaceutics 372 (2009) 39–48 41

hydrophilic PTFE membrane filter obtained from Millipore Cor-
poration (Billerica, MA). The filtrate was then equally divided
among three Fisherbrand disposable culture tubes (Borosilicate
glass 16 mm × 100 mm). Three consecutive UV measurements were
made for filtrate in each testing tube. The UV absorbance spec-
tra were recorded over the wavelength range from 190 to 400 nm,
where all major and minor absorbance peaks associated with the
components interested are covered. An averaged UV spectra was
then obtained by averaging the nine UV spectra acquired for each
powder sample and was used for later on data analysis and model-
ing.

2.7. Data analysis methods

Multivariate statistical data analysis techniques such as prin-
cipal component regression (PCR), partial least square (PLS)
regression, and multi-linear regression (MLR) are important tools
for analyzing multi-dimensional process data and building mul-
tivariate correlations. In this work, two approaches were used
for NIR quantification: (1) establishing multivariate calibration
models (PCR, PLS1, and MLR) to correlate the powder formula-
tion concentrations with the S–G 1st derivative NIR spectral data
at characteristic peak wave lengths and then using the mod-
els to predict independent samples; (2) establishing multivariate
calibration models (PCR, PLS1, and MLR) to correlate the NIR
absorbance spectral data over entire wavelength with the pow-
der formulation concentrations and then using the models to
predict independent samples. For the UV data set, the multivari-
ate calibration models (PCR, PLS1, and MLR) were constructed to
correlate the UV spectra with the powder concentrations. The pre-
diction results from the NIR and UV multivariate calibration models
were compared. All multivariate data analysis was performed by
using Unscrambler 9.7 software (Camo Technologies, Woodbridge,
NJ).

3. Results

3.1. Spectral characteristics

Fig. 1 is the NIR spectra for the four pure components at static
state studied in this work. At around 1692 nm, ibuprofen has a
profound NIR absorbance peak. At its vicinity, there are some
other peaks from the three excipient components: Eudragit peaks
Fig. 1. The NIR spectra for the four pure components at static state.
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Table 2
Characteristic NIR wavelengths identified for the pure components in the formula-
tion system.

Formulation
components

Characteristic NIR wavelength (nm)

Ibuprofen 1126, 1170, 1196, 1376, 1670, 1686, 1698, 1730, 1770, 2122
MCC 1418, 1468, 1604, 2046
HPMC 1508

Table 3
R2 values for calibration and leave-one-out cross validation models based on characterist

Blending time (min) Correlation Xmole with S–G 1st
derivative at wavelength 1126 nm

PLS1 PCR MLR

R2
calib

R2
xvalid

R2
calib

R2
xvalid

R2
calib

R2
xva

(a) Ibuprofen
Premix 0.453 0.399 0.451 0.400 0.608 0.44
1 0.524 0.473 0.522 0.473 0.595 0.42
2 0.579 0.534 0.575 0.532 0.640 0.48
3 0.521 0.471 0.518 0.471 0.588 0.40
4 0.655 0.619 0.655 0.619 0.653 0.61
5 0.687 0.656 0.685 0.655 0.721 0.60
6 0.640 0.598 0.639 0.599 0.639 0.59
8 0.674 0.641 0.669 0.638 0.747 0.63
10 0.686 0.656 0.681 0.652 0.762 0.65
15 0.730 0.705 0.726 0.702 0.785 0.69
20 0.686 0.656 0.682 0.652 0.750 0.64
25 0.760 0.737 0.760 0.735 0.804 0.72
30 0.756 0.721 0.742 0.719 0.796 0.70
45 0.757 0.734 0.754 0.731 0.805 0.71
60 0.835 0.818 0.832 0.816 0.876 0.82

Blending time (min) Correlation Xmole with S–G 1st
derivative at wavelength 1468 nm

PLS1 PCR MLR

R2
calib

R2
xvalid

R2
calib

R2
xvalid

R2
calib

R2
xva

(b) MCC
Premix 0.542 0.501 0.541 0.503 0.670 0.53
1 0.703 0.676 0.703 0.678 0.730 0.62
2 0.719 0.695 0.719 0.697 0.793 0.63
3 0.804 0.789 0.803 0.790 0.810 0.73
4 0.806 0.791 0.805 0.791 0.814 0.73
5 0.856 0.846 0.856 0.847 0.861 0.80
6 0.720 0.690 0.719 0.690 0.753 0.63
8 0.860 0.852 0.860 0.852 0.820 0.80
10 0.873 0.865 0.873 0.866 0.877 0.82
15 0.854 0.844 0.854 0.846 0.856 0.79
20 0.866 0.858 0.866 0.858 0.870 0.81
25 0.843 0.834 0.843 0.834 0.846 0.78
30 0.865 0.857 0.865 0.858 0.869 0.81
45 0.883 0.876 0.883 0.877 0.887 0.84
60 0.890 0.883 0.889 0.883 0.898 0.85

Blending time (min) Correlation Xmole with S–G 1st derivative at waveleng

PLS1 PCR

R2
calib

R2
xvalid

R2
calib

(c) HPMC
Premix 0.440 0.393 0.440
1 0.672 0.641 0.671
2 0.573 0.536 0.575
3 0.756 0.732 0.750
4 0.676 0.649 0.672
5 0.722 0.699 0.718
6 0.502 0.449 0.496
8 0.762 0.744 0.755
10 0.788 0.770 0.785
15 0.743 0.724 0.739
20 0.761 0.741 0.757
25 0.671 0.647 0.667
30 0.741 0.720 0.735
45 0.750 0.730 0.745
60 0.724 0.703 0.718
harmaceutics 372 (2009) 39–48

in blended mixture. Instead, multivariate methods were used to
extract both the qualitative and quantitative information from the
raw NIR spectral data, as discussed previously (Wu et al., 2003).
However, spectral preprocessing techniques such as S–G 1st deriva-

tive method did improve the peak separation to a certain degree,
which essentially paved the way for the quantification method
based on the S–G 1st derivative value for each single characteristic
peak, as discussed below.

ic wavelengths of formulation components.

Correlation Xmole with S–G 1st
derivative at wavelength 1170 nm

PLS1 PCR MLR

lid
R2

calib
R2

xvalid
R2

calib
R2

xvalid
R2

calib
R2

xvalid

4 0.427 0.371 0.425 0.372 0.599 0.436
6 0.508 0.455 0.506 0.458 0.604 0.440
2 0.575 0.528 0.570 0.525 0.642 0.483
6 0.476 0.421 0.473 0.421 0.549 0.351
8 0.663 0.627 0.661 0.626 0.703 0.573
0 0.667 0.632 0.665 0.631 0.702 0.574
9 0.606 0.560 0.605 0.561 0.665 0.522
5 0.626 0.587 0.621 0.583 0.718 0.592
8 0.645 0.609 0.638 0.603 0.744 0.633
2 0.702 0.673 0.697 0.669 0.768 0.668
1 0.652 0.616 0.646 0.612 0.728 0.609
1 0.761 0.738 0.757 0.735 0.808 0.726
8 0.726 0.699 0.762 0.695 0.549 0.350
8 0.725 0.697 0.721 0.694 0.781 0.682
2 0.828 0.810 0.824 0.806 0.884 0.834

Correlation Xmole with S–G 1st
derivative at wavelength 2046 nm

PLS1 PCR MLR

lid
R2

calib
R2

xvalid
R2

calib
R2

xvalid
R2

calib
R2

xvalid

4 0.544 0.507 0.544 0.510 0.677 0.541
5 0.705 0.677 0.705 0.679 0.739 0.633
1 0.701 0.673 0.701 0.675 0.734 0.623
1 0.807 0.790 0.807 0.791 0.814 0.734
7 0.765 0.744 0.765 0.745 0.781 0.686
6 0.822 0.807 0.821 0.808 0.832 0.760
9 0.698 0.664 0.697 0.665 0.741 0.619
6 0.851 0.839 0.850 0.840 0.859 0.799
7 0.869 0.858 0.869 0.859 0.874 0.818
7 0.834 0.821 0.834 0.823 0.841 0.773
8 0.864 0.854 0.864 0.855 0.871 0.816
5 0.832 0.821 0.832 0.822 0.841 0.800
7 0.858 0.847 0.857 0.848 0.867 0.813
2 0.873 0.864 0.873 0.864 0.880 0.830
5 0.873 0.863 0.873 0.864 0.884 0.833

th 1508 nm

MLR

R2
xvalid

R2
calib

R2
xvalid

0.396 0.655 0.511
0.642 0.760 0.665
0.538 0.679 0.547
0.726 0.830 0.762
0.646 0.764 0.665
0.696 0.835 0.765
0.446 0.675 0.516
0.739 0.833 0.765
0.768 0.831 0.759
0.722 0.813 0.734
0.738 0.827 0.751
0.645 0.757 0.680
0.716 0.816 0.737
0.727 0.841 0.775
0.700 0.808 0.722
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.2. Quantification using characteristic NIR peak values

.2.1. Construction of the multivariate calibration models
Using similar procedure reported elsewhere (Wu et al., 2007b),

he characteristic wavelengths for this formulation system were
isted in Table 2. Multivariate calibration models (PLS1, PCR, and

LR) were established to correlate the powder formulation com-
ositions (mole fractions or weight fractions) with the S–G 1st
erivative values of the NIR absorbance at the characteristic wave-

ength of formulation components at various time points. The
2 values for calibration and leave-one-out cross validation for
elected characteristic wavelengths were summarized in Table 3.
he following observations can be made:

1) PLS1 models generated almost identical results with PCR mod-
els;

2) MLR models always have higher R2 values than PLS1 model and
PCR models for the same characteristic wavelengths. That is,
MLR models have better selectivity for particular components.
All three models have pretty comparable R2 values for leave-
one-out cross validation;

3) In general, R2 values for three models increase as blending time
increases, but after 20 min, they are pretty constant in the time
frame of 20–45 min. This perhaps is an indication that all 26 for-
mulations have reached their blending end-point, sequentially.
.2.2. Validation of the multivariate calibration models and
omparison of model prediction performance

The multivariate calibration models established above were fur-
her validated by independent blending batches which include
ormulations A3, A5, A7, A8, A12, A13, A14, A15, A17, and A21.

ig. 2. Plots of relative prediction error between the predicted S–G 1st derivative spectral
erivative spectral data obtained by NIR measurements vs. formulation. (a) Ibuprofen at 1
508 nm for blending 25 min.
harmaceutics 372 (2009) 39–48 43

The selection of these validation batches covers the concentration
ranges of the two main formulation components (ibuprofen and
MCC). The blending time points for those independent batches were
premix, 1, 3, 5, 8, 10, 15, 20, 25, 30, 45, and 60 min. The prediction
results of those independent batches at various time points for each
characteristic wavelength were selectively shown in Fig. 2(a)–(c). As
we can see from Fig. 2(a)–(c ), the relative prediction error values
are ca. ±5% for ibuprofen at 1170 nm, ca. ±10% for MCC at 1468 nm,
and ca. ±5% for HPMC at 1508 nm. Therefore, the multivariate cal-
ibration models constructed above are able to reliably predict the
S–G 1st derivative spectral values at characteristic wavelengths of
formulation components.

3.3. Quantification using NIR absorbance spectral data over the
entire wavelength range

Concentration quantification of blended mixture was also
achieved by using the spectral data over the entire wavelength
ranges for the model calibration and validation. To do this, two
sets of multivariate calibration models were constructed indepen-
dently to predict the concentration of blending samples collected
at various time points. One set was multivariate calibration models
established to correlate the NIR absorbance data of blended pow-
der with the concentrations of components which are known from
the formulation component weights. The other set was multivari-
ate calibration models to correlate the UV absorbance data with the
concentrations of powder components weighted.
The relative prediction error (%) � is defined as:

� = Predicted concentration value − Targeted concentration value
Targeted concentration value

× 100%

data through the multivariate models (PLS1, PCR, and MLR) and the actual S–G 1st
170 nm for blending 30 min; (b) MCC at 1468 nm for blending 20 min; (c) HPMC at
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Fig. 3. The NIR multivariate calibration models: (a) ibuprofen; (b) HPMC; (c) MCC; and (d) Eudragit L100-55.
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.3.1. NIR multivariate calibration models and prediction results
The NIR multivariate calibration models are shown in

ig. 3(a)–(d). It shows that for main components in the formula-
ions, PLS1 calibration models display good correlations between
redicted concentrations and measured concentrations. The R2 val-
es for ibuprofen are 0.928 for calibration, 0.897 for leave-one-out
ross validation; the R2 values for MCC are 0.957 for calibration,
.939 for leave-one-out cross validation. However, for minor com-
onents, the PLS1 calibration models have smaller R2 values: for
udragit L100-55, 0.756 for calibration, 0.625 for leave-one-out
ross validation; for HPMC, 0.899 for calibration, 0.718 for leave-
ne-out cross validation.

The prediction results for independent samples of blended
owder mixtures at various time points can be compared to the tar-
et values of the component concentrations. When the predicted
oncentrations are very close to the target values, the blending
rocess is considered to achieve its end-point. Fig. 4(a) and (b)
s examples were used to show how good the prediction results
or ibuprofen and MCC when compared to the target values. As
een from Fig. 4(a) and (b), good linear correlations were found
etween the predicted concentration values with the target con-

entration values for these two components, as the R2 values are
.851 and 0.867 for ibuprofen and MCC, respectively. Therefore, the
IR multivariate calibration models are able to predict the concen-

rations of the main formulation components (ibuprofen and MCC)
ell.
3.3.2. UV multivariate calibration models and prediction results
The UV multivariate calibration models were shown in Fig. 5(a)

and (b). Preliminary solubility test results show that neither
HPMC nor MCC can be dissolved in methanol for UV absorbance
measurement. Therefore, during the exercise of building the UV
multivariate calibration models, only binary powder system of
ibuprofen and Eudragit L100-55 were included, leaving out the
HPMC and MCC. It shows that PLS1 calibration models display
good correlations between predicted concentrations and mea-
sured concentrations for both ibuprofen and Eudragit L100-55.
The R2 values for ibuprofen are 0.999 for calibration, 0.997 for
leave-one-out cross validation; the R2 values for Eudragit L100-55
are 0.999 for calibration, 0.997 for leave-one-out cross validation
(Table 4).

When these calibration models were used for predicting
concentrations of independent samples from binary powder
systems of ibuprofen and Eudragit L100-55, excellent R2 val-
ues were obtained with a satisfactory low �. However, when
these calibration models were used for predicting concentra-
tions of ibuprofen and eudragit L100-55 of independent samples
from the four-component powder systems, higher � values were

observed, as shown in Table 5. For ibuprofen, a � of 11–26% was
obtained. For Eudragit, a � of 845–950% was obtained. The pos-
sible reasons for these higher � values were discussed in the
following sections from both modeling and measurement perspec-
tives.
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Fig. 4. PLS1 model prediction

.3.3. Comparison of multivariate prediction results by NIR
alibration models and UV calibration models

The concentrations of blended mixture were predicted using
wo sets of multivariate calibration models established above. In
his work, when � was within 10%, the blending was considered
o approach its end-point; when � was within 5%, the blend-
ng end-point was achieved, based on the blend sample criteria
stablished in the FDA Draft Guidance (FDA, 2003). When this cri-
eria was applied to different components in the formulations, we
ound out that the time to reach blending homogeneity for indi-
idual component may be quite different, depending on whether
t is a major component (API or MCC) or a minor component
Eudragit or HPMC). The implication of this finding will be discussed
ater.

For the UV calibration models, the relative prediction error for
he main component ibuprofen is around 10–20% over the entire
lending time studied. However, the relative prediction error goes

s high as 830–940% for the minor component Eudragit L100-55,
lthough the calibration model for Eudragit L100-55 has high R2

alues of 0.999. From the modeling perspective, this is possibly due
o the fact that the UV multivariate calibration models were con-
tructed based on binary system of ibuprofen and eudragit L100-55
s: (a) ibuprofen and (b) MCC.

(where Eudragit L 100-55 is a minor component) instead of the
four components systems. Therefore, when we apply the model
to predict the component (ibuprofen and Eudragit L100-55) con-
centrations of the blending materials from the four-component
systems, we are actually extrapolating the model’s applicable range.
Theoretically, this is not the best modeling practice and caution
should be taken. However, as shown in this real world case, it could
still produce a reasonable prediction result for the main component
(ibuprofen in this case) in the four-component system.

4. Discussion

4.1. Scale of scrutiny and effective mass sampled for both NIR
measurement and UV measurement

The scale of scrutiny is essential for blending homogeneity eval-
uation during the course of blending operation. It is ultimately

linked to the amount of powder mass being sampled and evaluated.
By definition, the homogeneity of powder mixture is the degree to
which its composition is uniform throughout the entire powder
mixture. However, in practical world the homogeneity assessment
truly relies on results from surrogated samples or mass being sam-
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Fig. 5. The UV multivariate calibration m
led. For example, an intimate mixture of two powder components
ay be heterogeneous at the particulate level or molecular level

which is typically referred as micro-mixing), but relatively homo-
eneous at the level of a few grams or macro level (which is typically

able 4
redicted component concentrations of blended powder mixtures based on the UV multi

ample Predicted ibuprofen concentration Targeted ibuprofen con

a) Ibuprofen
A3-10 min 1.27e−03 1.44e−03
A3-15 min 1.27e−03 1.44e−03
A3-20 min 1.06e−03 1.44e−03
A3-25 min 1.12e−03 1.44e−03
A3-30 min 1.22e−03 1.44e−03
A3-45 min 1.13e−03 1.44e−03
A3-60 min 1.10e−03 1.44e−03

ample Predicted Eudragit concentration Targeted Eudragit conc

b) Eudragit L 100-55
A3-10 min 1.51e−06 1.60e−07
A3-15 min 1.51e−06 1.60e−07
A3-20 min 1.69e−06 1.60e−07
A3-25 min 1.64e−06 1.60e−07
A3-30 min 1.56e−06 1.60e−07
A3-45 min 1.63e−06 1.60e−07
A3-60 min 1.66e−06 1.60e−07
: (a) ibuprofen and (b) Eudragit L100-55.
referred as macro-mixing). Therefore, discussions on effective mass
sampled for the NIR monitoring and UV analysis were carried out
below, as it is directly linked to the powder blending homogeneity
evaluation results.

variate calibration model (for formulation A3).

centration Relative prediction error � (%) Blending stage inferred

11.43 Achieved end-point
11.50 Achieved end-point
26.13 Demixing
22.02 Demixing
15.33 Approaching end-point
21.32 Demixing
23.62 Demixing

entration Relative prediction error � (%) Blending stage inferred

−844.38 Not applicable
−845.00 Not applicable
−953.13 Not applicable
−922.50 Not applicable
−873.13 Not applicable
−917.50 Not applicable
−934.38 Not applicable
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Table 5
Powder formulation density measurement results and estimated effective mass
sampled by Brimrose NIR probe.

Number Bulk density
(g/ml)

Tap density
(g/ml)

Mmin (mg) (using
Db and Hmin)

Mmax (mg) (using
Dtap and Hmax)

1 0.424 0.598 2.66 15.03
2 0.446 0.614 2.80 15.42
3 0.385 0.534 2.42 13.42
4 0.400 0.569 2.51 14.30
5 0.400 0.565 2.51 14.18
6 0.452 0.625 2.84 15.70
7 0.407 0.565 2.56 14.18
8 0.398 0.569 2.50 14.30
9 0.419 0.619 2.63 15.56

10 0.400 0.593 2.51 14.90
11 0.443 0.619 2.78 15.56
12 0.374 0.547 2.35 13.74
13 0.385 0.565 2.42 14.18
14 0.391 0.565 2.46 14.18
15 0.432 0.609 2.71 15.29
16 0.389 0.569 2.44 14.30
17 0.405 0.625 2.54 15.70
18 0.372 0.551 2.34 13.85
19 0.405 0.583 2.54 14.65
20 0.412 0.619 2.59 15.56
21 0.389 0.583 2.44 14.65
22 0.412 0.583 2.59 14.65
23 0.424 0.625 2.66 15.70
2
2
2
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property and particle size, etc. When processing conditions (such
4 0.407 0.583 2.56 14.65
5 0.391 0.588 2.46 14.78
6 0.432 0.619 2.71 15.56

.1.1. The effective mass sampled by the NIR monitoring method
According to the complete-random-mixture (CRM) model (Pan

t al., 2004), relative variance of measured API content is inversely
roportional to its true value. Consequently, measurement uncer-
ainties of low-dose pharmaceutical mixture measurements are
arger than their high dose counterparts. An enlarged sampled
olume is significant for reducing measurement uncertainty and
nhancing the precision for determination of low-dose API con-
ents. Theoretically, the same principles apply to excipients if

easurement of excipients in the powder formulation is feasible
nd of interest. In this work, HPMC and Eudragit are minor compo-
ents in terms of their concentrations. Therefore, the measurement
ncertainty would be expected to be higher for HPMC and Eudragit.
he effective mass sampled by the NIR probe could be estimated as
ollows.

The illuminated spot size (d) for the NIR probe is approximately
mm. The penetration depth (H) depends on the laser power and

he density of powder, and would be approximately 0.5–2 mm for
he Brimrose NIR probe as provided by the vendor. This penetration
epth is pretty comparable to the literature data reported else-
here (Berntsson et al., 1999) for their film-coated pellets (whose
enetration depth ranged from 0.8 to 4.6 mm) and microcrystalline
ellulose (MCC) (whose penetration depth ranged from 0.33 to
.0 mm) when the wavelength ranges from 1100 to 2500 nm. They
Berntsson et al., 1999) found that penetration depth is wavelength
ependent. Let Db and Dtap be the bulk density and tap density of
he powder formulation, respectively. When the minimum pene-
ration depth Hmin of 0.5 mm and the maximum penetration depth
max of 2 mm are considered, the minimum and maximum effec-

ive mass (M) sampled by NIR probe for each formulation could be
stimated as follows,

= �
(

d
)2

H D (1)
min 2 min b

max = �
(

d

2

)2

HmaxDtap (2)
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Table 5 lists measurement results for density and estimated
region of the effective sampling mass by NIR probe. Table 5 shows
that for the NIR measurement in this work, the estimated Mmin is
with the region of [2.4 mg, 2.84 mg], while the estimated Mmax is
with the region of [13.85 mg, 15.70 mg].

4.1.2. The effective mass sampled by the UV analytical method
The effective mass used for UV spectrometer measurement in

our study was 20 mg only, due to the following technical constraint:
the UV spectrometer used in our study can only measure the UV
absorbance of species at very low concentration. If the species con-
centration is high, the UV spectrometer reading will be out of region,
thus dilution is necessary if a regular amount of powder sample is
taken from the blender for the UV analysis. To eliminate the possi-
ble analytical error propagation due to dilution, the powder sample
mass was set to 20 mg only, in which case no solution dilution is
needed after powder sample is dissolved in methanol. In addition,
we will have comparable scale of scrutiny for both NIR method and
the UV method: the effective mass used for the UV measurement
is about 7–8 times the estimated minimum effective mass of the
NIR measurement. Therefore, the blending homogeneity assess-
ment results or the component concentration quantification results
from these two methods will be more comparable.

As stated above, for the UV calibration models, the relative pre-
diction error for the main component ibuprofen is around 10–20%
over the entire blending time studied. This is comparable to the rel-
ative prediction error of the NIR calibration model, as demonstrated
from the following simple calculation. The effective mass used for
UV measurement is about 7–8 times that of the NIR measurement.
If the relative prediction error for the ibuprofen by the UV calibra-
tion model is divided by a factor of 7–8, it will yield 1.4–2.9% which
is very close to the relative prediction error of ibuprofen by the NIR
calibration model.

In the meanwhile, the relative prediction error goes as high
as 830–940% for the minor component Eudragit L100-55 by the
UV calibration model, although the calibration model for Eudragit
L100-55 has high R2 values of 0.999. UV spectrometer is a well-
established analytical instrument and pretty accurate. Various
efforts were made to eliminate possible experimental errors dur-
ing each every step of the experiment. The UV spectra used for
our final analysis were averaged spectra from nine duplicate mea-
surements, so any random error or noise should be averaged out.
Therefore, such a high relative prediction error (� ∼900%) cannot
be attributed to either instrumental error or experimental error.
Most likely it is due to the fact that we are applying the UV cal-
ibration model based on data acquired from samples of binary
powder mixture to samples of four-component powder mixture.
When we apply this calibration model to predict the minor com-
ponent’s concentration of Eudragit of the four-component powder
mixture, mathematically we are actually extrapolating the model.
Therefore, a reasonable prediction error is not warranted.

4.2. Homogeneities of both API and excipients

The modeling results in this work indicated that, the time
required to reach blending end-point for major components in the
formulation may be different from that for minor components in the
same formulation. This suggests that, when we only focus on API
blending homogeneity, we are not necessarily reaching the blend-
ing homogeneity of excipients, especially for minor components.
This is understandable as different component has different flow
as blending speed, blender size and type, etc.) and other factors
(such as chemical compositions of the formulation components and
blending methods) are fixed, the physical characteristics of the for-
mulation components (such as flow property and particle size, etc.)
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ay dictate how much time is needed for each component to reach
lending homogeneity. Before the powder blending process truly
eaches its blending end-point, the evaluation results of the powder
lending homogeneities (for either API or excipient components)
ill be a function of both the blending time and the scale of scrutiny.
t fixed blending time points, the evaluation results will largely
epend on the scale of scrutiny or the amount of powder materials
ampled for analysis. Therefore, this study demonstrated the crit-
cal importance of scale of scrutiny concept for powder blending
nit operation. On the other hand, the drawback of the traditional
lending homogeneity assessment method which is only based on
he API assay was highlighted through this study. Furthermore, the
lending homogeneity of excipients may be critical for certain cases
uch as narrow therapeutic index drug and high potency drugs.

recent report highlighted the importance of understanding the
xcipient variability (Wasylachuk et al., 2007). Therefore, under-
tanding the variability of both API and excipients and their impact
n the powder blending process are critical elements for powder
lending QbD, such as the determination of optimal blending time
equired to reach the homogeneity for all of the components.

. Conclusions

An integrated multivariate approach was developed to deter-
ine the constituent concentrations (both API and excipients) of

nal powder blending mixture using NIR process monitoring in
onjunction with UV assay for verification. A mixture design was
reated to include 26 powder formulations consisting of ibupro-
en as the model drug and three excipient components (HPMC,

CC, and Eudragit L100-55). PLS1, PCR, and MLR models were
stablished to link the formulation compositions with the S–G 1st
erivative NIR spectral data at ibuprofen characteristic wavelength
f 1777 nm, which have average relative prediction errors of 9.5%
or the nine independent formulations. PLS models based on the
IR data and UV data were constructed and validated. Both models
redicted the main components’ concentrations well in the powder
lends, although prediction error is larger for minor components.
s expected from the complete-random-mixture model, the mea-
urement uncertainties were higher for minor components in the
owder formulations. The discrepancy between multivariate pre-
iction capabilities based on the NIR model and UV model were
iscussed in the context of scale of scrutiny and model applicability.

The multivariate PLS1 models based on NIR spectra could pre-
ict the concentrations of both ibuprofen and excipients well for
he final well-blended four-component mixtures. The multivariate
LS1 models based on UV spectra has R2 value of 0.99 and could pre-
ict the concentrations of both ibuprofen and Eudragit L100-55 well
or binary powder mixture. These UV PLS1 calibration models could
redict the concentration of the main component ibuprofen of the
our-component powder mixtures well. However, they fail to pre-
ict the concentration of the minor component Eudragit L100-55 in
he four-component powder formulations due to extrapolation of
he applicable region of the model. The complete-random-mixture

odel also explains the larger measurement uncertainty inherent
ith the minor components in the four-component powder formu-

ations. Further study on the impact of scale-up will be carried out.
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